martes, 12 de marzo de 2013

Unidad de almacenamiento

LA UNIDAD DE ALMACENAMIENTO MAGNÉTICO DE DATOS MÁS PEQUEÑA DEL MUNDO


Se ha conseguido construir la unidad de almacenamiento magnético de datos más pequeña del mundo. Usa sólo 12 átomos por bit, la unidad básica de la información digital, y almacena un byte completo (de 8 bits) dentro de una cantidad ínfima de materia: tan sólo 96 átomos. En comparación, una unidad de disco duro moderna necesita más de 500 millones de átomos por byte.

La proeza tecnológica es obra de un equipo de científicos de IBM y el Centro Alemán para la Ciencia del Láser de Electrones Libres (CFEL)

Esta singular unidad de almacenamiento de datos se construyó átomo por átomo con la ayuda de un microscopio de Efecto Túnel en el Centro de Investigación de Almaden de IBM, en San José, California.

El equipo de Sebastian Loth del CFEL y Andreas Heinrich de IBM construyó los patrones regulares de átomos de hierro, alineándolos en  filas de seis átomos cada una. Dos filas son suficientes para almacenar un bit. Un byte, a su vez, consta de ocho pares de filas de átomos. Usa sólo un área de 4 por 16 nanómetros. Esto corresponde a una densidad de almacenamiento que es cien veces superior a la de una unidad de disco duro moderna.
Los datos son escritos y leídos en la unidad nanométrica de almacenamiento con la ayuda de un microscopio de Efecto Túnel. Los pares de filas de átomos tienen dos posibles estados magnéticos, representando los dos valores, 0 y 1, de un bit clásico. Un pulso eléctrico de la punta del microscopio de Efecto Túnel invierte la configuración magnética. Un pulso más débil permite leer la configuración, aunque actualmente el "cabezal" de lectura sólo es estable a una temperatura muy fría: 268 grados centígrados bajo cero.




ENLACE

lunes, 11 de marzo de 2013

Tarjeta gráfica

TARJETA GRÁFICA

Recientemente conocimos que AMD no iba a lanzar la nueva generación de tarjeta gráficas, las Radeon HD 8000, hasta el último trimestre de año. Que AMD no vaya a lanzar su nueva generación en los próximos meses no significa que no vayan a llegar nuevas gráficas. La primera en llegar podría ser la Radeon HD 7790 basada en el núcleo Bonaire XT.
La nueva AMD Radeon HD 7790 viene a cubrir el hueco existente entre la Radeon HD 7770 y la Radeon HD 7850. Esta nueva gráfica equiparía el núcleo Bonaire XT con 768 shaders processors y 1 GB de memoria GDDR5 con una interfaz de 128 bits. Aunque todavía no se han revelado datos oficiales, gracias a la web de CLBenchmark se ha filtrado el rendimiento de esta nueva gráfica en varios test.
El rendimiento de esta nueva gráfica es hasta un 19% superior al de la Radeon HD 7770 y desde un 4 a un 69% inferior a la Radeon HD 7850. El rendimiento de la nueva Radeon HD 7790 sería por tanto más cercano a la Radeon HD 7770 que al modelo superior. Además de proporcionar cierta información preliminar sobre el rendimiento también muestra información sobre las especificaciones.
La nueva gráfica basada en el núcleo Bonaire XT funcionaría a una frecuencia de 1.050 MHz y confirmaría los datos sobre la cantidad de memoria, 1 GB con un bus de 128 bits. Además ha un dato de esta gráfica que indica que esta gráfica podría estar basada en una arquitectura diferente a la que usan las gráficas de la serie 7000, ya que solo es compatible con el API OpenCL 1.2, mientras que el resto de las Radeon HD 7000 son compatibles con el API OpenCL 1.2 y la versión anterior, la 1.1.


ENLACES


El procesador


EL PROCESADOR

El microprocesador (o simplemente procesador) es el circuito integrado central y más complejo de un sistema informático; a modo de ilustración, se le suele llamar por analogía el «cerebro» de un computador. Es un circuito integrado conformado por millones de componentes electrónicos. Constituye la unidad central de procesamiento (CPU) de un PC catalogado como microcomputador.
Es el encargado de ejecutar los programas, desde el sistema operativo hasta las aplicaciones de usuario; sólo ejecuta instrucciones programadas en lenguaje de bajo nivel, realizando operaciones aritméticas y lógicas simples, tales como sumar, restar, multiplicar, dividir, las lógicas binarias y accesos a memoria.
Esta unidad central de procesamiento está constituida, esencialmente, por registros, una unidad de control, una unidad aritmético lógica (ALU) y una unidad de cálculo en coma flotante(conocida antiguamente como «co-procesador matemático»).
El microprocesador está conectado generalmente mediante un zócalo específico de la placa base de la computadora; normalmente para su correcto y estable funcionamiento, se le incorpora un sistema de refrigeración que consta de un disipador de calor fabricado en algún material de alta conductividad térmica, como cobre o aluminio, y de uno o más ventiladores que eliminan el exceso del calor absorbido por el disipador. Entre el ventilador y la cápsula del microprocesador usualmente se coloca pasta térmica para mejorar la conductividad del calor. Existen otros métodos más eficaces, como la refrigeración líquida o el uso de células peltier para refrigeración extrema, aunque estas técnicas se utilizan casi exclusivamente para aplicaciones especiales, tales como en las prácticas de overlocking.
La medición del rendimiento de un microprocesador es una tarea compleja, dado que existen diferentes tipos de "cargas" que pueden ser procesadas con diferente efectividad por procesadores de la misma gama. Una métrica del rendimiento es la frecuencia de reloj que permite comparar procesadores con núcleos de la misma familia, siendo este un indicador muy limitado dada la gran variedad de diseños con los cuales se comercializan los procesadores de una misma marca y referencia. Un sistema informático de alto rendimiento puede estar equipado con varios microprocesadores trabajando en paralelo, y un microprocesador puede, a su vez, estar constituido por varios núcleos físicos o lógicos. Un núcleo físico se refiere a una porción interna del microprocesador cuasi-independiente que realiza todas las actividades de una CPU solitaria, un núcleo lógico es la simulación de un núcleo físico a fin de repartir de manera más eficiente el procesamiento. Existe una tendencia de integrar el mayor número de elementos dentro del propio procesador, aumentando así la eficiencia energética y la miniaturización. Entre los elementos integrados están las unidades de punto flotante, controladores de la memoria RAM, controladores de buses y procesadores dedicados de video.

¿cómo trabaja un procesador?
El procesador de la computadora actúa como el principal componente de coordinación del equipo. La CPU tendrá acceso a los programas, datos u otras funciones de ordenador de la memoria RAM (Random Access Memory) cuando es llamado por el sistema operativo del ordenador. El procesador entonces interpretar las instrucciones de equipo que están relacionados con la tarea pedido antes de enviarlo de vuelta a la memoria RAM del ordenador para su ejecución a través del bus de sistema de un ordenador en el orden correcto de ejecución.
Informática Lógica del procesador
En el núcleo del procesador de la computadora es la capacidad para que proceso de código de lenguaje de máquina. Hay tres instrucciones básicas en lenguaje de máquina que la CPU puede ejecutar:
- Traslado de datos desde una única ubicación en la memoria del ordenador a otro
- Saltar a la instrucción de nuevos conjuntos sobre la base de operaciones lógicas o elecciones
- Realizar operaciones matemáticas utilizando la Unidad aritmética lógica (ALU)
Para llevar a cabo estas operaciones el procesador hace uso de un bus de direcciones que utiliza para enviar las direcciones de la memoria del ordenador, así como un bus de datos que se utiliza para recuperar o enviar información a la memoria del ordenador. También tiene una línea de control independiente que se notificará a la memoria de la computadora cuando no tiene suficiente o enviar / establecer una posición de memoria dada. Para llevar a cabo todas sus operaciones diseñadas, la CPU también tiene un reloj que sirve de base para la sincronización de las acciones del procesador con el resto del equipo. Para acceder a las instrucciones de computadora de uso común o de datos, procesadores también pondrá en práctica los diversos sistemas de almacenamiento en caché con el fin de obtener acceso a los datos necesarios a un ritmo más rápido que usando memoria RAM de acceso directo. 





 Historia
Seguidamente se expone una lista ordenada cronológicamente de los microprocesadores más populares que fueron surgiendo:

1971: El Intel 4004
El 4004 fue el primer microprocesador del mundo, creado en un simple chip y desarrollado por Intel. Era un CPU de 4 bits y también fue el primero disponible comercialmente. Este desarrollo impulsó la calculadora de Busicom e inició el camino para dotar de «inteligencia» a objetos inanimados y así mismo, a la computadora personal.



1972: El Intel 8008


Codificado inicialmente como 1201, fue pedido a Intel por Computer Terminal Corporation para usarlo en su terminal programable Datapoint 2200, pero debido a que Intel terminó el proyecto tarde y a que no cumplía con la expectativas de Computer Terminal Corporation, finalmente no fue usado en el Datapoint. Posteriormente Computer Terminal Corporation e Intel acordaron que el i8008 pudiera ser vendido a otros clientes.

1974: El SC/MP
El SC/MP desarrollado por National Semiconductor, fue uno de los primeros microprocesadores, y estuvo disponible desde principio de 1974. El nombre SC/MP (popularmente conocido como «Scamp») es el acrónimo de Simple Cost-effective Micro Processor (Microprocesador simple y rentable). Presenta un bus de direcciones de 16 bits y un bus de datos de 8 bits. Una característica, avanzada para su tiempo, es la capacidad de liberar los buses a fin de que puedan ser compartidos por varios procesadores. Este microprocesador fue muy utilizado, por su bajo costo, y provisto en kits, para propósitos educativos, de investigación y para el desarrollo de controladores industriales diversos.



1974: El Intel 8080
EL 8080 se convirtió en la CPU de la primera computadora personal, la Altair 8800 de MITS, según se alega, nombrada en base a un destino de la Nave Espacial «Starship» del programa de televisión Viaje a las Estrellas, y el IMSAI 8080, formando la base para las máquinas que ejecutaban el sistema operativo CP/M-80. Los fanáticos de las computadoras podían comprar un equipo Altair por un precio (en aquel momento) de u$s395. En un periodo de pocos meses, se vendieron decenas de miles de estas PC.




1975: Motorola 6800
Se fabrica, por parte de Motorola, el Motorola MC6800, más conocido como 6800. Fue lanzado al mercado poco después del Intel 8080. Su nombre proviene de que contenía aproximadamente 6.800 transistores. Varios de los primeras microcomputadoras de los años 1970 usaron el 6800 como procesador. Entre ellas se encuentran la SWTPC 6800, que fue la primera en usarlo, y la muy conocida Altair 680. Este microprocesador se utilizó profusamente como parte de un kit para el desarrollo de sistemas controladores en la industria. Partiendo del 6800 se crearon varios procesadores derivados, siendo uno de los más potentes el Motorola 6809.



1982: El Intel 80286
El 80286, popularmente conocido como 286, fue el primer procesador de Intel que podría ejecutar todo el software escrito para su predecesor. Esta compatibilidad del software sigue siendo un sello de la familia de microprocesadores de Intel. Luego de seis años de su introducción, había un estimado de 15 millones de PC basadas en el 286, instaladas alrededor del mundo.

1985: El Intel 80386
Este procesador Intel, popularmente llamado 386, se integró con 275000 transistores, más de 100 veces tantos como en el original 4004. El 386 añadió una arquitectura de 32 bits, con capacidad para multitarea y una unidad de traslación de páginas, lo que hizo mucho más sencillo implementar sistemas operativos que usaran memoria virtual.

1989: El Intel 80486
La generación 486 realmente significó contar con una computadora personal de prestaciones avanzadas, entre ellas,un conjunto de instrucciones optimizado, una unidad de coma flotante o FPU, una unidad de interfaz de bus mejorada y una memoria caché unificada, todo ello integrado en el propio chip del microprocesador. Estas mejoras hicieron que los i486 fueran el doble de rápidos que el par i386 - i387 operando a la misma frecuencia de reloj. El procesador Intel 486 fue el primero en ofrecer un coprocesador matemático o FPU integrado; con él que se aceleraron notablemente las operaciones de cálculo. Usando una unidad FPU las operaciones matemáticas más complejas son realizadas por el coprocesador de manera prácticamente independiente a la función del procesador principal.

1994: EL PowerPC 620
En este año IBM y Motorola desarrollan el primer prototipo del procesador PowerPC de 64 bit, la implementación más avanzada de la arquitectura PowerPC, que estuvo disponible al año próximo. El 620 fue diseñado para su utilización en servidores, y especialmente optimizado para usarlo en configuraciones de cuatro y hasta ocho procesadores en servidores de aplicaciones de base de datos y vídeo. Este procesador incorpora siete millones de transistores y corre a 133 MHz. Es ofrecido como un puente de migración para aquellos usuarios que quieren utilizar aplicaciones de 64 bits, sin tener que renunciar a ejecutar aplicaciones de 32 bits.

1997: El Intel Pentium II
Un procesador de 7,5 millones de transistores, se busca entre los cambios fundamentales con respecto a su predecesor, mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste. Gracias al nuevo diseño de este procesador, los usuarios de PC pueden capturar, revisar y compartir fotografías digitales con amigos y familia vía Internet; revisar y agregar texto, música y otros; con una línea telefónica; el enviar vídeo a través de las líneas normales del teléfono mediante Internet se convierte en algo cotidiano.
1999: El Intel Pentium III
El procesador Pentium III ofrece 70 nuevas instrucciones Internet Streaming, las extensiones de SIMD que refuerzan dramáticamente el desempeño con imágenes avanzadas, 3D, añadiendo una mejor calidad de audio, video y desempeño en aplicaciones de reconocimiento de voz. Fue diseñado para reforzar el área del desempeño en el Internet, le permite a los usuarios hacer cosas, tales como, navegar a través de páginas pesadas (con muchos gráficos), tiendas virtuales y transmitir archivos video de alta calidad. El procesador se integra con 9,5 millones de transistores, y se introdujo usando en él tecnología 250 nanómetros.
2000: EL Intel Pentium 4
Este es un microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel. Es el primero con un diseño completamente nuevo desde el Pentium Pro Se estrenó la arquitectura NetBurst, la cual no daba mejoras considerables respecto a la anterior P6. Intel sacrificó el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE.

2004: El AMD Athlon 64
El AMD Athlon 64 es un microprocesador x86 de octava generación que implementa el conjunto de instrucciones AMD64, que fueron introducidas con el procesador Opteron. El Athlon 64 presenta un controlador de memoria en el propio circuito integrado del microprocesador y otras mejoras de arquitectura que le dan un mejor rendimiento que los anteriores Athlon y que el Athlon XP funcionando a la misma velocidad, incluso ejecutando código heredado de 32 bits.El Athlon 64 también presenta una tecnología de reducción de la velocidad del procesador llamada Cool'n'Quiet,: cuando el usuario está ejecutando aplicaciones que requieren poco uso del procesador, baja la velocidad del mismo y su tensión se reduce.
2007: El AMD Phenom
Phenom fue el nombre dado por Advanced Micro Devices (AMD) a la primera generación de procesadores de tres y cuatro núcleos basados en la microarquitectura K10. Como característica común todos los Phenom tienen tecnología de 65 nanómetros lograda a través de tecnología de fabricación Silicon on insulator (SOI). No obstante, Intel, ya se encontraba fabricando mediante la más avanzada tecnología de proceso de 45 nm en 2008. Los procesadores Phenom están diseñados para facilitar el uso inteligente de energía y recursos del sistema, listos para la virtualización, generando un óptimo rendimiento por vatio. Todas las CPU Phenom poseen características tales como controlador de memoria DDR2 integrado, tecnología HyperTransport y unidades de coma flotante de 128 bits, para incrementar la velocidad y el rendimiento de los cálculos de coma flotante. La arquitectura Direct Connect asegura que los cuatro núcleos tengan un óptimo acceso al controlador integrado de memoria, logrando un ancho de banda de 16 Gb/s para intercomunicación de los núcleos del microprocesador y la tecnología HyperTransport, de manera que las escalas de rendimiento mejoren con el número de núcleos. Tiene caché L3 compartida para un acceso más rápido a los datos (y así no depende tanto del tiempo de latencia de la RAM), además de compatibilidad de infraestructura de los zócalos AM2, AM2+ y AM3 para permitir un camino de actualización sin sobresaltos. A pesar de todo, no llegaron a igualar el rendimiento de la serie Core 2 Duo.
2008: Los AMD Phenom II y Athlon II
Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45 nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65 nm a los 45 nm, es que permitió aumentar la cantidad de caché L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2 MiB del Phenom original a 6 MiB.
Entre ellos, el Amd Phenom II X2 BE 555 de doble núcleo surge como el procesador binúcleo del mercado. También se lanzan tres Athlon II con sólo Caché L2, pero con buena relación precio/rendimiento. El Amd Athlon II X4 630 corre a 2,8 GHz. El Amd Athlon II X4 635 continua la misma línea.
AMD también lanza un triple núcleo, llamado Athlon II X3 440, así como un doble núcleo Athlon II X2 255. También sale el Phenom X4 995, de cuatro núcleos, que corre a más de 3,2GHz. También AMD lanza la familia Thurban con 6 núcleos físicos dentro del encapsulado.

2011: El Intel Core Sandy Bridge
Llegan para remplazar los chips Nehalem, con Intel Core i3, Intel Core i5 e Intel Core i7 serie 2000 y Pentium G.
Intel lanzó sus procesadores que se conocen con el nombre en clave Sandy Bridge. Estos procesadores Intel Core que no tienen sustanciales cambios en arquitectura respecto a nehalem, pero si los necesarios para hacerlos más eficientes y rápidos que los modelos anteriores. Es la segunda generación de los Intel Core con nuevas instrucciones de 256 bits, duplicando el rendimiento, mejorando el desempeño en 3D y todo lo que se relacione con operación en multimedia. Llegaron la primera semana de enero del 2011. Incluye nuevo conjunto de instrucciones denominado AVX y una GPU integrada de hasta 12 unidades de ejecución.

2011: El AMD Fusion
AMD fusion es el nombre clave para un diseño futuro de microprocesadores Turion, producto de la fusión entre AMD y ATI, combinando con la ejecución general del procesador, el proceso de la geometría 3D y otras funciones de GPUs actuales. La GPU (procesador gráfico) estará integrada en el propio microprocesador. Se espera la salida progresiva de esta tecnología a lo largo del 2011; estando disponibles los primeros modelos (Ontaro y Zacate) para ordenadores de bajo consumo entre últimos meses de 2010 y primeros de 2011, dejando el legado de las gamas medias y altas (Llano, Brazos y Bulldozer para mediados o finales del 2011).




2012: El Intel Core Ivy Bridge
Ivy Bridge es el nombre en clave de los procesadores conocidos como Intel Core de tercera generación. Son por tanto sucesores de los micros que aparecieron a principios de 2011, cuyo nombre en clave es Sandy Bridge. Pasamos de los 32 nanómetros de ancho de transistor en Sandy Bridge a los 22 de Ivy Bridge. Esto le permite meter el doble de ellos en la misma área. Un mayor número de transistores significa que puedes poner más bloques funcionales dentro del chip. Es decir, este será capaz de hacer un mayor número de tareas al mismo tiempo.



Enlaces
Wikipedia
Taringa
- Apuntes

viernes, 1 de marzo de 2013

LA MEMORIA RAM

MEMORIA RAM

HISTORIA

Uno de los primeros tipos de memoria RAM fue la memoria de núcleo magnético, desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los años 60 y principios de los 70. Esa memoria requería que cada bit estuviera almacenado en un toroide de material ferromágnetico de algunos milímetros de diámetro, lo que resultaba en dispositivos con una capacidad de memoria muy pequeña. Antes que eso, las computadoras usaban relés y líneas de retardo de varios tipos construidas para implementar las funciones de memoria principal con o sin acceso aleatorio.
En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente año se presentó una memoria DRAM de 1024 bytes, referencia 1103 que se constituyó en un hito, ya que fue la primera en ser comercializada con éxito, lo que significó el principio del fin para las memorias de núcleo magnético. En comparación con los integrados de memoria DRAM actuales, la 1103 es primitiva en varios aspectos, pero tenía un desempeño mayor que la memoria de núcleos.
En 1973 se presentó una innovación que permitió otra miniaturización y se convirtió en estándar para las memorias DRAM: la multiplexación en tiempo de la direcciones de memoria. MOSTEK lanzó la referencia MK4096 de 4096 bytes en un empaque de 16 pines,1 mientras sus competidores las fabricaban en el empaque DIP de 22 pines. El esquema de direccionamiento2 se convirtió en un estándar de facto debido a la gran popularidad que logró esta referencia de DRAM. Para finales de los 70 los integrados eran usados en la mayoría de computadores nuevos, se soldaban directamente a las placas base o se instalaban en zócalos, de manera que ocupaban un área extensa de circuito impreso. Con el tiempo se hizo obvio que la instalación de RAM sobre el impreso principal, impedía la miniaturización , entonces se idearon los primeros módulos de memoria como el SIPP, aprovechando las ventajas de la construcción modular. El formato SIMM fue una mejora al anterior, eliminando los pines metálicos y dejando unas áreas de cobre en uno de los bordes del impreso, muy similares a los de las tarjetas de expansión, de hecho los módulos SIPP y los primeros SIMM tienen la misma distribución de pines.
A finales de los 80 el aumento en la velocidad de los procesadores y el aumento en el ancho de banda requerido, dejaron rezagadas a las memorias DRAM con el esquema original MOSTEK, de manera que se realizaron una serie de mejoras en el direccionamiento como las siguientes:

  • FPM-RAM (Fast Page Mode RAM)
Inspirado en técnicas como el "Burst Mode" usado en procesadores como el 486,3 se implantó un modo direccionamiento en el que el controlador de memoria envía una sola dirección y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones. Esto supone un ahorro de tiempos ya que ciertas operaciones son repetitivas cuando se desea acceder a muchas posiciones consecutivas. Funciona como si deseáramos visitar todas las casas en una calle: después de la primera vez no seria necesario decir el número de la calle únicamente seguir la misma. Se fabricaban con tiempos de acceso de 70 ó 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium.
  • EDO-RAM (Extended Data Output RAM)
Lanzada en 1995 y con tiempos de accesos de 40 o 30 ns suponía una mejora sobre su antecesora la FPM. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el búffer de salida hasta que comienza el próximo ciclo de lectura.
  • BEDO-RAM (Burst Extended Data Output RAM)
Fue la evolución de la EDO RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a más de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50% mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.

KINGSTON HYPER BEAST: MEMORIAS RAM DE ALTO RENDIMIENTO
Kingston ha presentado de manera oficial sus módulos de memoria RAM DDR3 Kingston HyperX Beast, se trata de una familia de módulos y kits de memoria RAM que están destinadas a los usuarios más exigentes y que se añaden a la familiar HyperX Predator de Kingston. Están disponibles con velocidades que van desde los 1600Mhz hasta los 2400Mhz y en kits de 8GB, 16GB, 32GB y 64GB.
El fabricante Kingston lleva muchos años ofreciendo módulos de memoria RAM con buenas prestaciones y a unos precios asequibles, además es la marca de memoria RAM que presenta menos problemas de compatibilidad a la hora de su instalación.
Para seguir ampliando la familia HyperX Predator, Kingston ha presentado sus módulos de memoria RAM Kingston HyperX Beast, los cuales y como podemos ver en las imágenes, disponen de un diseño basado en un disipador de color negro y una estética agresiva.

Estos módulos de memoria RAM DDR3 están especialmente diseñados para los procesadores de tercera generación Intel Core Ivy Bridge, aunque también son compatibles con las APU y Procesadores de AMD. Una de sus principales características, es el soporte para la función XMP, mediante la cual podemos configurar la velocidad, latencia y voltaje de manera rápida y sencilla, pues tan solo hay que seleccionar el perfil en la BIOS y listo.
Kingston ofrece los módulos de memoria Kingston HyperX Beast en kits de 8GB, 16GB, 32GB y 64GB con velocidades que van desde los 1600Mhz hasta los 2400Mhz. En cuanto a las latencias y voltajes, tenemos módulos con latencia CL9, CL10, CL11 y un voltaje que desde 1.5V hasta 1.65V. Dado que son módulos de memoria de alto rendimiento, Kingston los ofrece testeados de fabrica y además con una garantía de por vida. Os recomendamos la lectura de nuestro análisis sobre las Kingston HyperX Predator para que comprobéis de lo que esta familia de memorias RAM puede ofrecer.
ENLACES:
Wikipedia.
- Hardzone